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Abstract. Two-loop vertex Feynman diagrams with infrared and collinear divergences are investigated by
two independent methods. On the one hand, a method of calculating Feynman diagrams from their small
momentum expansion [1] extended to diagrams with zero mass thresholds [2] is applied. On the other hand,
a numerical method based on a two-fold integral representation is used [3], [4]. The application of the latter
method is possible by using lightcone coordinates in the parallel space. The numerical data obtained with
the two methods are in impressive agreement.

1 Introduction

The purpose of this paper is to calculate typical two-loop
IR-divergent vertex diagrams by two independent meth-
ods. One of them is based on general formulae for asymp-
totic expansions of Feynman integrals in momenta and
masses [5,6] (see [7] for a brief review) and subsequent
use of conformal mapping and summation by Padé ap-
proximations [1,2]. The general simple formulae have been
proven [6] at least for the Feynman integrals off the mass
shell1. However it is quite natural to expect that the same
off-shell formulae hold as well for the pure large mass limit
when there are no large momenta, as it has been confirmed
in [2]. This conjecture is likely to hold even for Feynman
integrals which possess IR and collinear divergences from
the very beginning. To check the validity of this conjecture
we shall calculate IR-divergent diagrams 7 and 8 shown in
Fig. 1 (the labelling is according to [2], Fig. 3) by use of
the large mass expansion and compare results in a wide
range of external momenta with results based on numeri-
cal integration.

The project is motivated by the demand to provide the
necessary integrals for the process Z → bb̄. The before-
mentioned divergences appear in the limit mb → 0, which
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for asymptotic expansions have been recently presented and
applied in [8]

Fig. 1. On-shell infrared divergent planar diagrams with zero
thresholds (solid lines massive, dashed lines massless)

is a natural limit to take since mb is small compared to
the other scales in this process. The case of a finite mb

mass can in principle also be handled by both methods,
see e.g. [9] for the momentum expansion method applied
to a finite diagram (Case 5, m5 = m6 = M , all others
zero, see Fig. 1). In this case, however, one obtains less
precise results because of the low thresholds, which are
eliminated in the present approach due to the factorization
of logarithms. For the numerical method the case mb 6= 0
presents no difficulty.

The numerical methods, as introduced in [3,4,10,11]
are in the present paper extended to the case of IR and
collinear divergences. We will explain this extension below.
The two methods used in this paper are of complementary
nature. While for the method based on the large mass ex-
pansion the equal mass case is simpler than the case of
different masses, the situation is reversed if we apply the
two-fold integral representation. The presence of poles of
the type limm1→m2 1/(m1 − m2) in the integral represen-
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tations results in numerical instabilities which have to be
handled with due care. Corresponding poles in the first
method can be avoided from the very beginning by cal-
culating the Taylor coefficients analytically in terms of
rational numbers and ζ(2) for the equal mass case. In the
case of nonequal masses the Taylor coefficients contain
such poles of high order (see below), which cancel in the
limm1→m2 . Numerically a close approach is possible due
to the use of a multiple precision package [12].

The idea of the numerical approach is now well docu-
mented in the literature. We will thus restrict ourselves to
describe the necessary changes demanded by the presence
of IR and collinear divergences. These changes are simple:
one merely has to find subtraction terms to absorb the
divergences, which are sufficiently easy to allow for a di-
rect evaluation. So there was no new conceptual challenge
present in the numerical method, but solely a technical
hurdle to be overcome.

The paper is organized as follows. First, we discuss the
method based on the large mass expansion for Cases 7
and 8, considering the equal as well as different masses in
Case 7. We then discuss the relevant subtraction terms
for the numerical method. Once they are understood, all
the previous cases can be easily obtained. We summarize
the results in a set of tables, and compare accuracies and
CPU times for both methods. We finally conclude that
the agreement of data obtained by the two independent
methods confirms the usefulness of both.

2 Case 7

2.1 Equal masses

Let FΓ (p1, p2, M ; ε) be the Feynman integral correspond-
ing to Case 7, with m3 = m4 = m5 = 0, m1 = m2 =
m6 = M, p2

1 = p2
2 = 0, q = p1 − p2. We imply that the

factor 1/(k2 − m2 + i0) corresponds to a line, 1/(2π)d is
not included. For convenience we divide our Feynman in-
tegrals by iπd/2Γ (1 + ε)µ−2ε per loop, where d = 4 − 2ε
is the space-time dimension and µ the scale parameter
of dimensional regularization [13] (although we shall not
usually write down µ explicitly).

Although the diagram has IR poles, up to 1/ε2, let us
apply the general formula for the large mass expansion [5,
6] (as it was applied for similar IR-finite planar diagrams
in [2]). There are contributions from two subgraphs in
this formula: the graph Γ ≡ γ1 itself and γ2 = {126}
(we denote subgraphs by collections of their lines). The
first, “naive”, contribution is the formal Taylor expansion
of the initial diagram in external momenta. It reduces to
two-loop vacuum graphs with numerators, two massive
and one massless line. This term possesses IR divergences
that were not present from the very beginning.

The second contribution is nothing but the Taylor ex-
pansion of the heavy triangle (with p1 + k2, p2 + k2 as
external momenta, k2 being the loop momentum of the
light triangle) inserted into the light triangle. Now, this
heavy triangle is a scalar function of three variables: (p1 +

k2)2, (p2 + k2)2 and q2. When performing its Taylor ex-
pansion, the factor (p1 + k2)2 leads to a cancellation of
one of the lines in the light triangle. This produces a one-
loop massless diagram with its external momentum on
the lightcone. It is zero within dimensional regularization.
Thus we come to the conclusion that only terms without
such factors survive and one can put k2 to zero in the
expansion of the heavy triangle. So, the term under con-
sideration happens to be just a product of two factors:
the light triangle with zero masses and the Taylor expan-
sion of the heavy triangle with p1, p2, p1 − p2 as external
momenta. The light triangle is equal to

− 1
ε2

Γ (1 − ε)2

Γ (1 − 2ε)
1

(−q2 − i0)1+ε
. (1)

(We shall later on omit −i0 in −q2 − i0, for brevity.)
The Taylor expansion of the heavy triangle is also cal-

culated explicitly:

− 1
(M2)1+ε

1
Γ (1 + ε)

∞∑
n=0

Γ (n + 1 + ε)
2(n + 1)(2n + 1)!!

(q2/2M2)n.

(2)
The second term does not involve UV divergences, in

contrast to the large mass expansions considered in [2]. In
large mass expansions (as well as large momentum expan-
sions off the mass shell) induced IR divergences are usually
cancelled by induced UV divergences. Here we have an ex-
ample of a new cancellation: the induced IR divergences
are cancelled by collinear divergences that are present in
the second term. To a large extent this happens when we
put to zero the above mentioned one-loop massless dia-
gram on the lightcone where the UV divergences are can-
celled by the collinear divergences.

Thus the contribution of the second subgraph takes
the form (with the normalization described above)

− 1
q2

1
M2 (−q2/µ2)−ε(M2/µ2)−ε 1

ε2

Γ (1 − ε)2

Γ (1 + ε)Γ (1 − 2ε)

×
∞∑

n=0

Γ (n + 1 + ε)
2(n + 1)(2n + 1)!!

(q2/2M2)n. (3)

If an initial quantity is finite the cancellation of poles
serves as a good check of the asymptotic expansion. In
our case, it is reasonable to check that the poles in the
sum of the terms in our expansion are the same as in
the initial diagram. To see that the poles in ε in the sum
of the two contributions are the same as in the initial
Feynman integral let us apply the following expression for
the pole part in ε of the product of three propagators,
namely, 1/k2, 1/(k2 − 2p1k) and 1/(k2 − 2p2k) considered
as a distribution in k:

i
π2−ε

(−q2)1+ε

{(
− 1

ε2 + γE
1
ε

)
δ(d)(k)

+
1
ε

∫ 1

0

dz

z
[δ(k − zp1) + δ(k − zp2) − 2δ(k)]

}
. (4)

It is easy to observe that the term with δ(d)(k) exactly
corresponds to the pole part of the second contribution.
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Thus, the term with the integral over z should give the
pole part of the naive contribution. Let us therefore calcu-
late the integral over z of the rest of the diagram (which is
nothing but a one-loop triangle diagram with the external
momenta (1 − z)p1, p2 − zp1, plus a similar contribution,
with p2 instead of p1). Representing the result in the form
of a Taylor expansion in the external momenta we con-
clude that the pole part in ε of the naive part is equal
to

1
M4

1
ε

∞∑
n=0

sn+1(n + 1)!
2(n + 2)(2n + 3)!!

(q2/2M2)n, (5)

where sn = S1(n) and we introduce

Sk(n) =
n∑

j=1

1
jk

. (6)

This property has served as a check in our calculation.
The double pole in ε comes only from γ2. Using (3) we

obtain the following explicit expression for the coefficient
at 1/ε2:

− 2
(q2)2

arcsin2
√

q2/4M2 . (7)

The naive part is calculated as described in [2], see also
[14]. The two-loop bubble integrals with equal masses and
one zero mass are again of the type as used in [2], i.e. ex-
pressible in terms of Γ -functions as a result of which the
Taylor coefficients of the naive part are essentially rational
numbers (apart from a ζ(2) as for the second contribu-
tion). These Taylor coefficients have been calculated with
FORM [15] and the Padé approximants in turn by means
of REDUCE [16], which allows an easy change to floating
point numbers of arbitrary precision. Adding up the finite
parts, the results are presented in Table 1 with the follow-
ing normalization. In addition to −πdΓ (1 + ε)2µ−4ε, we
extract the factor Γ (1−ε)2

Γ (1−2ε)
1

µ4 , and we choose µ = M .

2.2 Two different masses

Proceeding as before in Case 7 with two different masses,
m3 = m4 = m5 = 0, m1 = m2 = M1, m6 = M2, we come
to the following result for the contribution of the second
subgraph:

1
(−q2)1+ε

1
(M2

2 )ε

1
ε2

Γ (1 − ε)2

Γ (1 + ε)Γ (1 − 2ε)

×
∞∑

n=0

n!
{

Γ (−n − 1 + ε)
(M2

2 )n+1

(M2
2 − M2

1 )2n+2

+
(

M2
2

M2
1

)ε 2n+1∑
i=0

(−1)iΓ (n − i + ε)
(2n − i + 1)!

(M2
1 )i−n

(M2
2 − M2

1 )1+i

}
(q2)n.

(8)

Calculation of the pole and finite parts allows for the rep-
resentation

r2

ε2 +
r1 − r2L

ε
+ r0 − r1L +

1
2
r2L

2 , (9)

where L = lnM2
2 + ln(−q2) and

r0 =
1

2M2
1 q2

∞∑
n=0

n!(q2/M2
1 )n

×
{

n−1∑
i=0

(n − i − 1)!
zi+1(2n − i + 1)!

(
ln2(1 − z) − 2ζ(2)

× +2 ln(1 − z)sn−i−1 + s2
n−i−1 + tn−i−1

)
+

2n+1∑
i=n

(−1)i−n

3zi+1(i − n)!(2n − i + 1)!

×(
3 ln2(1 − z)si−n + 3 ln(1 − z)(s2

i−n − ti−n)

+3sn+1tn+1 + ln3(1 − z) + s3
i−n − s3

n+1

+ui−n − un+1 − 3si−nti−n

)}
,

r1 =
1

M2
1 q2

∞∑
n=0

n!(q2/M2
1 )n

×
{

n−1∑
i=0

(n − i − 1)!
zi+1(2n − i + 1)!

(ln(1 − z) + sn−i−1)

−
2n+1∑
i=n

(−1)i−n

2zi+1(i − n)!(2n − i + 1)!

× (− ln2(1 − z) − 2 ln(1 − z)si−n − s2
i−n

+ti−n + s2
n+1 − tn+1

)}
,

r2 =
1

M2
1 q2

∞∑
n=0

n!(q2/M2
1 )n

×
{

n−1∑
i=0

(n − i − 1)!
zi+1(2n − i + 1)!

+
2n+1∑
i=n

(−1)i−n (ln(1 − z) + si−n − sn+1)
zi+1(i − n)!(2n − i + 1)!

}
,

where tn = ζ(2) − S2(n) and un = −2ζ(3) + S3(n), Sk(n)
given by (6) and z = 1 − M2

2 /M2
1 . The importance of

presenting the above formulae lies in their easy numerical
evaluation. If instead we would use the expanded form, 30
coefficients could not even be compiled anymore simulta-
neously.

We also calculate (in the same way as in the case with
equal masses) a quantity, the pole part of which is equal
to the pole part of the naive contribution:

1
q2

1
ε

∞∑
n=1

n!
n∑

j=1

1
j

{
(−1)j

j∑
i=0

(
2n − j + i + 1

2n − j + 1

)

×Γ (j − i − n − 1 + ε)
(j − i)!

× (M2
2 )n+i−j+1−ε

(M2
2 − M2

1 )2n−j+i+2 +
2n−j+1∑

i=0

(
j + i

j

)
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Table 1. The finite part for Case 7 with equal masses

q2/M2 [10/10] [14/14] numerical results
Re Im Re Im Re Im

1.0 2.764761286 −0.1635351018 2.764761286 −0.1635351018 2.76477 −0.16353
2.0 1.619771096 0.4534319337 1.619771096 0.4534319337 1.61977 0.45344
3.0 1.477131552 0.5068403285 1.477131552 0.5068403285 1.47713 0.50684
3.9 3.0354569 0.28920132 3.035456900 0.2892013177 3.03546 0.28920
3.99 5.1725 0.0143 5.17259 0.014233 5.17253 0.014236
4.01 6.188 2.748 6.187 2.749 6.18778 2.74948
4.1 3.27648 3.92262 3.27645 3.92263 3.27646 3.92263
5.0 −0.438728 2.54547 −0.438728258 2.545472409 −0.438728 2.54548
6.0 −0.89277747 1.49214654 −0.8927774793 1.492146568 −0.892777 1.49215
7.0 −0.90571711 0.92720655 −0.9057171008 0.9272065484 −0.905717 0.927207
8.0 −0.828158487 0.59820497 −0.8281584836 0.5982049870 −0.828159 0.598205

10.0 −0.65092293 0.26109287 −0.6509229304 0.2610928562 −0.650923 0.261093
40.0 −0.07133439 −0.0467805 −0.0713343755 −0.0467805683 −0.0713345 −0.0467805

100.0 −0.0126312 −0.0182863 −0.012631500 −0.018286325 N/A N/A
400.0 −0.000556 −0.002743 −0.00055586 −0.00274078 −0.000555895 −0.00274078

× (−1)iΓ (n − j − i + ε)
(2n − j − i + 1)!

× (M2
1 )i+j−n−ε

(M2
2 − M2

1 )j+i+1

}
(q2)n. (10)

Explicitly, this gives

1
ε

2
M2

1 q2

∞∑
n=1

n!(q2/M2
1 )n

×
n∑

j=1

(−1)j

j

{
(−1)n

j∑
i=0

(
2n − j + i + 1

2n − j + 1

)

× sn−j+i+1(1 − z)n−j+i+1

(j − i)!(n − j + i + 1)!z2n−j+i+2

+
n−j−1∑

i=0

(
j + i

j

)
(n − j − i − 1)!

(2n − j − i + 1)!zj+i+1

+
n+1∑
i=0

(−1)i

(
n + i

j

)
ln(1 − z) + si

i!(n + 1 − i)!zn+i+1

}
. (11)

Furthermore this representation of the pole part has
been used as a check of the naive part.

Finally there remains to calculate the finite contribu-
tion of the naive part. Again we proceed as in [2] and [14].
The difficulty arising now is a complication in the bub-
ble integrals with two different masses and one zero mass
(e.g., m3 = 0):

VB(α, β, γ, m1, m2, m3) =
(−1)(α+β+γ)

(iπ
d
2 )2

×
∫

ddk1d
dk2

(k2
1 − m2

1)α(k2
2 − m2

2)β((k1 − k2)2 − m2
3)γ

, (12)

Apart from Γ -functions these contain now the hyper-
geometric function 2F1(a, b, c; z) with the argument z =
1 − m2

1
m2

2
≤ 1 [17] (z = 0 and 2F1 = 1 in the equal

mass case!). Therefore it does not seem to be advisable
anymore to use FORM for the evaluation of the Tay-
lor coefficients since too complicated expressions would
arise. Instead we extended a program developed for arbi-
trary nonzero masses [9] based on the multiple precision
FORTRAN by D.H. Bailey [12]. In this framework the
occurrence of a zero mass, i.e. the additional IR diver-
gences cause the following complication: while for arbi-
trary nonzero masses only the bubble integrals

VB(1, 1, n, m1, m2, m3) = F (1, 1, n, m1, m2, m3)

+
1
ε

1
(n − 1)(n − 2)

1
(m2

3)(n−2) , n > 2, (13)

(F(· · ·) being the finite part) are divergent like 1
ε (apart

from VB(1, 1, 1) and VB(1, 1, 2) which have also 1
ε2 -terms),

in the present case all the needed bubble integrals
VB(1, m, n) with m ≥ 1 and n ≥ 3 have a 1

ε -term, which
is to be calculated by means of the hypergeometric func-
tion 2F1(a, b, c; z) with integer indices a, b, c (d = 4) and
c = a + b + 1. This 2F1 can be expressed in terms of
ln(1 − z) and powers of z and 1 − z.

Knowing the divergent parts of the bubble integrals
explicitly, the recursion for their finite part can be per-
formed and the complete contribution to the finite part of
the diagram can be calculated.

Finally two further remarks are in order. The first con-
cerns the evaluation of the second subgraph. As one ob-
serves from the Taylor series of r0, r1 and r2 in (9), these
contain high powers of 1

z . In the equal mass case (z = 0),
the expansion of the ln(1 − z) to high powers cancels all
inverse powers of z and the finite coefficients as described
in Sect. 2.1 are obtained. Numerically, however, due to
the use of the multiple precision program of Bailey [12]
for mass ratios close to 1 (e.g. z ∼ 10−3) still stable re-
sults in close agreement with the equal mass case can be
obtained.

The second remark concerns adding up of the various
contributions. There are two possibilities: one can sum the
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different series (for r0, r1 etc.) by means of Padé’s, multi-
ply the various results with the corresponding powers of
L (see e.g. (9)) and sum — or one can add up on the
level of the coefficients, multiplying the Taylor coefficients
with the powers of L, and then apply Padé ’s. We used
the latter procedure since the coefficients are known to
high precision (of the order of 50 decimals). The summed
series were of course by far not that precise and if can-
cellations occur, one looses more precision than necessary.
That in this manner correct results are obtained is demon-
strated by comparing the results with those by the numer-
ical method (see tables).

While in the present paper adding different Taylor se-
ries with kinematical factors is performed for the calcu-
lation of one diagram only, the same procedure will also
work when adding scalar amplitudes from various Feyn-
man diagrams - and may indeed work in an optimal way.

For the pole parts we do not show tables since they are
either given explicitly in terms of known functions or arbi-
trarily many coefficients can be obtained easily and thus
arbitrarily high precision. The results for the finite part
are presented in Table 2. We use the same normalization
as in the case with the equal masses and choose µ = M1.

3 Case 8

Let here FΓ (p1, p2, M ; ε) be the Feynman integral corre-
sponding to Case 8, with mi = 0, i = 1, . . . , 5, m6 = M .
Now, in its large mass expansion, we have contributions
from four subgraphs: γ1 ≡ Γ, γ2 = {3456}, γ3 = {126},
and γ4 = {6}. In the last two contributions, the factor (1)
is again naturally factorized. Straightforward calculation
leads to the following result for the sum of them:

− 1
(M2)1+ε

1
(−q2)1+ε

1
ε3

Γ (1 − ε)3

Γ (1 − 2ε)

×
{ ∞∑

n=0

n!
Γ (n + 2 − ε)

(−q2/M2)n − (−q2/M2)−ε

×
∞∑

n=0

Γ (n + 1 − ε)
Γ (n + 2 − 2ε)

(−q2/M2)n

}
. (14)

The calculation of the contribution of γ2 is similar to
the corresponding calculations for Cases 1 and 5 in [2],
with the following result:

1
(M2)2+ε

1
(−q2)ε

1
ε

∞∑
n=0

c(2)
n (ε)(q2/M2)n, (15)

where (see Eq. (16) on top of the next page
and

C(r1, r2; s) =
Γ (r1 + r2 − s − d

2 )Γ (s − r2 + d
2 )

Γ (r1)Γ (s + d
2 )

. (17)

Note that this expression is obtained from the correspond-
ing contribution of Case 5 in [2] by the change

C(2 + i1 + i2, 2 + n − (i1 + i2 − n3)/2; (i1 + i2 + n3)/2)
→ C(1 + i2, 3 + n + (i1 − i2 + n3)/2; (i1 + i2 + n3)/2).

To see that the poles in ε in the sum of all the four con-
tributions are the same as in the initial Feynman integral
let us once again apply (4). Now we observe that the term
with δ(d)(k) corresponds to the pole part of the sum of
the contributions from γ3 and γ4 given by (14). Thus, the
term with the integral over z should give the pole part of
the sum of contributions from γ1 and γ2. So, we perform
integration over z of the one-loop triangle diagram with
one non-zero and two zero masses. Furthermore we apply
general formulae for the large mass expansion to this very
triangle and eventually conclude that the pole part in ε
of the sum of the contributions from γ1 and γ2 should be
equal to the pole part of the following quantity:

1
q2

1
(M2)1+ε

2
εΓ (1 + ε)

×
∞∑

n=1

n!


 n∑

j=1

C(j + 1, 2n − j + 2;n)
j


 (q2/M2)n

+2
1

(−q2)1+ε

1
M2

Γ (1 − ε)
ε2

×
∞∑

n=1

snΓ (n + 1 − ε)
Γ (n + 2 − 2ε)

(−q2/M2)n. (18)

Note that double poles in (18) cancel so that there must
be as well a cancellation of double poles in the sum of the
contributions of γ1 and γ2. Again this has been checked
and also that the single pole part agrees with the one
obtained by direct calculation of the sum of γ1 and γ2.

For Case 8, the double pole in ε originates only from
the sum of the contributions of γ3 and γ4. From (14) we
have the following formula for its coefficient:

1
(q2)2

{
ln(−q2/M2) ln(1 + q2/M2) + Li2(−q2/M2)

}
.

(19)
Concerning the finite part, the situation is similar as in

Sect. 2.1, Case 7, with equal masses. The bubble integrals
are of the same type as in Case 5 [2] and the calculation
of the Taylor coefficients have been done with FORM and
the Padé ’s with REDUCE. Again we present no data for
the divergent parts since arbitrary precision can easily be
obtained from the expansion. The results for the finite part
are presented in Table 3 where the same normalization as
in Case 7 is used.

4 The numerical method

The two-fold integral representation derived in [18,3,10]
cannot be naively applied to cases infected by genuine
IR or collinear divergences. Nevertheless, all these diver-
gences can be handled by appropriate subtraction terms.
One observes a few new characteristics in such cases:

– the divergences are most easily absorbed using light-
cone coordinates for internal momenta in the parallel
space,
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c(2)
n (ε) =

∑
i1,i2,n3≥0, i1+i2+n3 even

i1+i2+n3≤2n

(n3,−2)∑
j3≥0

(−1)(i1+i2+n3)/2 (n − (i1 + i2 − n3)/2)!
(n − (i1 + i2 + n3)/2)!

× i1!i2!θ(i1 + i2 − j3)θ(i1 − i2 + j3)θ(−i1 + i2 + j3)
((n3 − j3)/2)!((i1 + i2 − j3)/2)!((i1 − i2 + j3)/2)!((−i1 + i2 + j3)/2)!

Γ (1 − ε)Γ ((i1 + i2 − j3)/2 + 1 − ε)
Γ (1 + ε)Γ ((i1 + i2 − j3)/2 + 2 − 2ε)

×C(1 + i2, 3 + n + (i1 − i2 + n3)/2; (i1 + i2 + n3)/2), (16)

Table 2. The finite part for Case 7 with different masses

q2/m2
1 [12/12] [15/15] numerical results

Re Im Re Im Re Im
1.0 1.255976034 0.4303855857 1.255976034 0.4303855857 1.255974 0.430385
2.0 0.6127661221 0.4991658334 0.6127661221 0.4991658334 0.61277 0.499164
3.0 0.4346988621 0.4502907526 0.4346988621 0.4502907526 0.43470 0.450292
3.9 0.4583945 0.34378450 0.458394486 0.343784488 0.4584 0.34379
3.99 0.4926 0.2501 0.49254 0.25004761 0.4925 0.25003
4.01 0.637 0.190 0.6359 0.1902 0.63598 0.18994
4.1 0.73506 0.43258 0.73504 0.43260 0.73526 0.43271
5.0 0.32211 0.855621 0.322110 0.855622 0.32219 0.85569
6.0 0.00752 0.802352 0.0075200 0.8023528 0.00756 0.80237
7.0 −0.16178 0.682114 −0.161777 0.682110 −0.16176 0.68214
8.0 −0.25256 0.56468 −0.252547 0.564693 −0.25255 0.56469

10.0 −0.3259 0.3799 −0.3256 0.37987 −0.32559 0.37975
40.0 −0.06956 −0.02984 −0.0695667 −0.029828 −0.06956 −0.02983

100.0 −0.01350 −0.01529 −0.013493 −0.015279 −0.01349 −0.01528
400.0 −0.00072 −0.00253 −0.00071 −0.002537 −0.00071 −0.00254

Table 3. The finite part for Case 8

q2/m2
6 [12/12] [15/15] numerical results

Re Im Re Im Re Im
0.5 81.17501719 12.06458720 81.17501719 12.06458720 81.1750 12.0644
1.0 17.766 19.97799834 17.7659 19.97799834 17.7658 19.9779
2.0 −0.605 7.376 −0.6047 7.3759 −0.604 7.376
3.0 −1.753 3.182 −1.7543 3.1815 −1.754 3.182
4.0 −1.596 1.606 −1.595 1.603 −1.595 1.604
5.0 −1.33 0.881 −1.327 0.880 −1.326 0.880
6.0 −1.10 0.50 −1.096 0.503 −1.095 0.503
7.0 −0.92 0.28 −0.914 0.289 −0.913 0.288
8.0 −0.77 0.15 −0.773 0.159 −0.771 0.159

10.0 − 0.56 0.01 − 0.572 0.023 − 0.570 0.025

q

q1

q2

1

2
3

4

5

6l k

Fig. 2. Propagator numbering, external and loop momenta

– some of the remaining domains of integration are un-
bounded, cf. Fig. (5).

We will comment on these features in the next three sub-
sections.

q

q1-k

q2+k

1

2

3

Fig. 3. Oneloop subgraph C(k)

4.1 Preparations

The graph we have to calculate is

I = µ2d−12
∫

ddkddl
1

P1P2P3P4P5P6
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= µ2d−12
∫

ddk
1

P4P5P6
C(k) , (20)

where C(k) denotes the inner one-loop triangle graph with
external momenta shifted by k (Fig. 3).

For our calculation, we choose the rest frame of the
decaying particle and the outgoing particles moving along
the x axis. This is the natural reference frame for parallel-
/orthogonal space splitting. Together with the condition
that both outgoing momenta are on the lightcone, the ex-
ternal momenta can be expressed through a single param-
eter e (cf. Fig. 2):

q = q1 + q2 = (2e, 0,0)
q1 = (e, e,0)
q2 = (e,−e,0) (21)

As usual we parameterize the loop momenta l and k as
follows:

lµ = (l0, l1, l⊥) and kµ = (k0, k1,k⊥) , (22)

further we define

s = l2⊥ and t = k2
⊥ . (23)

In contrast to [3,10] we apply a more symmetric substitu-
tion to linearize the propagators in l0, l1, k0 and k1 (the
Jacobian gives a factor 2 for each loop momentum):

l0 → l0 + l1

l1 → l1 − l0

k0 → k0 + k1

k1 → k1 − k0 , (24)

which is equivalent to expressing the propagators in light-
cone variables from the beginning. After this substitution
the propagators become

P1 = 4l0(l1 + e) − s − m2
1 + i0

P2 = 4l1(l0 − e) − s − m2
2 + i0

P3 = 4(l0 + k0)(l1 + k1) − s − t − √
s
√

tz − m2
3 + i0

P4 = 4k0(k1 − e) − t − m2
4 + i0

P5 = 4k1(k0 + e) − t − m2
5 + i0

P6 = 4k0k1 − t − m2
6 + i0 (25)

Since we are interested in the collinear divergent case, we
now set m4 and m5 equal to 0, m6 should be kept small
for the finite contribution as a regulator. The limit will be
made later analytically. The calculation is valid for arbi-
trary masses m1, m2 and m3, except for the trivial case
m1 = m2 = m3 = 0.

In this representation the collinear divergence along
the lines k0 = 0 and k1 = 0 for t = 0 is obvious. To cure
it, we adopt the following subtraction scheme for C(k) =
C(k0, k1, t):

C(k0, k1, t) = C(k0, k1, t) − C(k0, 0, 0)
−C(0, k1, 0) + C(0, 0, 0) (I)
+C(k0, 0, 0) − C(0, 0, 0) (II)
+C(0, k1, 0) − C(0, 0, 0) (III)
+C(0, 0, 0) . (IV )

(26)

Contribution (I) will be finite and can be calculated in
d = 4 dimensions, since we subtracted out the collinear
divergences and added again the twice subtracted infrared
divergence at k ≡ 0. Contributions (II) and (III) contain
the collinear divergence which starts at 1/ε, and (IV) is
the overall infrared divergence with a 1/ε2 pole. Therefore
these have to be calculated in d = 4 − 2ε dimensions.

4.2 Divergent parts

Contribution (IV) is easy: it is simply a product of two
one-loop diagrams, where the k loop is completely mass-
less:

IIV = −iπd/2 Γ 2
(

d−4
2

)
Γ

( 6−d
2

)
Γ (d − 3)

×(−q2 − i0)
d−6
2 C(0, 0, 0) . (27)

The expansion of the Γ functions starts with 1/ε2, so
C(0, 0, 0) has to be calculated up to O(ε2). The last order
is done numerically.

Contribution (II) is more complicated, since the l and
k integrations do not decouple. However, the integrand is
independent of z, the angle between l⊥ and k⊥, so there is
no function with a cut in the complex k1 plane. We have

III =
π

d−2
2

2Γ
(

d−2
2

)
+∞∫

−∞
dk0

(
C(k0, 0, 0) − C(0, 0, 0)

)

×
∞∫
0

t
d−4
2 dt

+∞∫
−∞

dk1
1

P4P5P6
, (28)

and perform the k1 integration with Cauchy’s theorem.
We close the contour in the lower half plane, and there is
only a contribution from P5 in the finite interval 0 > k0 >
−e, outside this interval all poles are on the same side of
the real axis.

The integration over t is of the form

∞∫
0

dt
t

d−6
2

t + 4k0(k0 + e) − i0
= (4k0(k0 + e))

d−6
2

×Γ

(
d − 4

2

)
Γ

(
6 − d

2

)
, (29)

so after a substitution k0 = −ze the result is

III = −iπd/2 Γ
(

d−4
2

)
Γ

(
d−6
2

)
Γ

(
d−2
2

) (−q2 − i0)
d−6
2

1∫
0

dz
1
z

[z(1 − z)]
d−4
2 (C(ze, 0, 0) − C(0, 0, 0)).(30)

The expansion of the Γ functions starts at 1/ε, so the
integral over z, which will be done numerically, has to be
evaluated up to O(ε).
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k0

l0

e

e
k0

l0

e

e
k0

l0

e

e
(P1,P5) (P2,P4) (P2,P6) Fig. 4. Contributions from terms 1 and 2

k0

l0

e

e
k0

l0

e

e
k0

l0

e

e
(P2,P4) (P2,P5) (P2,P6) Fig. 5. Contributions from term 3

Contribution (III) can be handled analogously by per-
forming the k0 integration with Cauchy’s theorem and
gives

IIII = −iπd/2 Γ
(

d−4
2

)
Γ

(
d−6
2

)
Γ

(
d−2
2

) (−q2 − i0)
d−6
2

1∫
0

dz
1
z

[z(1 − z)]
d−4
2 (C(0, ze, 0) − C(0, 0, 0)) .(31)

For the symmetric case m1 = m2, IIII is equal to III.

4.3 The finite part

The most difficult is the finite part from contribution (I).
In principle, the calculation is the same as in [3,10], but
care has to be taken due to the divergent behavior of the
individual parts of this contribution. The integration over
z, the angle between l⊥ and k⊥, is elementary for each for
the four terms. In fact, only the first term with the full
C(k0, k1, t) dependence depends also on z, and therefore
gives a result with a cut in the complex l1 and k1 plane.

The l1 and k1 integrations are done with the aid of
the residue theorem. Each term is still convergent on its
own, so the contours can be closed independently. For the
C(k0, k1, t) term we have to take into account the cut
which is in the upper half plane if l0 + k0 < 0 and in
the lower half plane if l0 + k0 > 0. By checking the half
plane where the propagators have their poles, we find three
contributing triangles in the (l0, k0) plane from the pairs
(P1, P5), (P2, P4) and (P2, P6), depicted in Fig. 4.

For the second term, C(k0, 0, 0), we can close the con-
tours arbitrarily. If we choose to close them in the same
way as above (this is equivalent to avoiding poles from
P3, the propagator that depends on both loop momenta)
we find the same triangles from the same propagators as
above.

With C(0, k1, 0) we find something new in our paral-
lel/orthogonal space technique: regardless how we close

k0

l0

e

e
(P2,P5)

Fig. 6. Contribution from term 4

the contours, we end up with an unbounded area in the
(l0, k0) plane. If we continue with the strategy of avoiding
poles from P3, we have to close the l1 contour in the upper
half plane if l0 > 0 and in the lower half plane if l0 < 0,
furthermore we close the k1 contour always in the upper
half plane. This gives us the three areas shown in Fig. 5
from (P2, P4), (P2, P5) and (P2, P6) respectively.

For last term C(0, 0, 0), which factorizes in l and k we
can close so that in the l1 integration only P2 contributes,
and in the k1 integration only P5. This results in a square
(Fig. 6).

Next we will do the t and later the s integration ana-
lytically. Since we left m6 finite, after partial fractioning
the integrals are of the form

∞∫
0

ds

∞∫
0

dt
1

s + s0 − i0
1

t + t0 − i0

× 1
c
√

(at + b + i0 + cs)2 − 4st
for term 1

∞∫
0

ds

∞∫
0

dt
1

s + s0 − i0
1

t + t0 − i0

× 1
at + b + i0 + cs

for term 2 & 3
∞∫
0

ds

∞∫
0

dt
1

s + s0 − i0
1

s + s′
0 − i0

× 1
t + t0 − i0

1
t + t′0 − i0

for term 4.

(32)
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k0

l0

e

e

A

B
C

Fig. 7. Integration regions in the (l0, k0) plane

Several of these integrals become divergent as m6 →
0, whenever the corresponding t0 is proportional to m6.
Consequently, the leading term is proportional to log(m6).
However, as can be verified, pairs of the above integrals
remain finite in the limit m6 → 0. The pairs depend on
the position in the (l0, k0) plane (area A, B or C, Fig. 7).

5 Numerical results

Tables 1–3 summarize the results. Generally, there are
two sets of results for the momentum expansion method,
namely two [n/n] Padé approximants involving 2n+1 Tay-
lor coefficients, which document that the results are sta-
ble and converge. It is the second column which should be
compared with the numerical data.

Let us now discuss the three cases separately. Case 7
with equal masses, Table 1, was the most challenging for
the numerical method. Below the threshold, we could
achieve sufficient numerical accuracy. Above the thresh-
old, the numerical method could only achieve an accuracy
of ∼ 1%. Fortunately, for the equal mass case, M. Spira
could kindly provide data which were used for comparison
with the momentum expansion method to high accuracy.
The lack of accuracy in the numerical method in this case
is due to the degenerate cut structure which is present in
the equal mass case. As a result, we are confronted with
two large contributions which almost cancel.

In Case 7 with different masses, Table 2, we chose the
masses m1 = m2 = 80 GeV (∼ MW ) and m6 = 180 GeV
(∼ Mt) and µ = m1. If we wish to calculate the process
Z → bb̄ the kinematics of interest is q2/m2

1 ∼ 1.3, i.e. far
below the threshold at q2/m2

1 = 4. In such a situation the
momentum expansion method always seems to be superior
to any other approach (to achieve 10 decimals precision
with a few coefficients only is no problem). Nevertheless,
also for low q2 the numerical method yields high precision
as well which will be sufficient for all practical purposes.
Indeed the agreement is quite impressive.

For higher q2 the momentum expansion method nat-
urally gets less precise, in particular near the thresholds:
here q2 = 4m2

1 and q2 = (m1 + m6)2, i.e. q2/m2
1 ∼ 10.6.

Between the thresholds and above, both methods again
show surprisingly good agreement.

The situation is indeed quite different for Case 8.
While for the case of interest in Z → bb̄, i.e. q2/m2

1 = 1
both approaches yield approximately the same precision,
the momentum expansion method looses quickly for the

higher q2, i.e. many more Taylor coefficients would be
needed.

Quite generally speaking the results of the momentum
expansion method obtained so far seem to indicate that
the more heavy masses in a diagram occur, the better the
convergence of the Padé approximants. This is at least
qualitatively plausible since we start from a large mass
expansion. It is also numerically verified comparing Case 7
and 8.

In any case, splitting off systematically zero-mass
thresholds yields more precise results for the momentum
expansion method than keeping small but non-vanishing
masses resulting in low thresholds. This has been discussed
in [9] for Case 5 (i.e. m5 = m6 = M and all others 0, see
Tables 3 and 4 of that Ref.). For the numerical method
to handle such cases is much easier. In fact, one could
rely on the original integral representations [3,10] with-
out the modifications considered here and achieve much
better numerical results for all cases.

Concerning the CPU-time, comparison of the methods
is difficult. In the momentum expansion method the real
job is to calculate the Taylor coefficients. Once they are
known, for any q2 (in the complex plane) the calculation
of the diagram under consideration is a matter of sec-
onds. Thus, providing Taylor coefficients for the diagrams
is something which practically settles the calculation of
the diagrams under consideration once and for all in a
wide range of q2. This is in particular true if only one
nonzero mass is involved since in this case the Taylor co-
efficients are just rational numbers plus some well known
irrationals like ζ(2), ζ(3) etc. The methods to calculate
Taylor coefficients are at present still a matter of intense
investigation (see e.g. also [19]) and the hope is that we
will soon have more efficient methods for their calculation
and higher coefficients than used here can be obtained in
the future.

For the numerical method, we can give a rough esti-
mate by comparison with the results of [3]. Due to the ex-
tra subtraction terms, the CPU time needed here is about
an order of magnitude larger than in the IR- and collinear
convergent cases studied in [3].

6 Conclusion

Two different methods to calculate scalar two-loop ver-
tex diagrams with infrared and collinear divergences have
been investigated and interesting techniques for their cal-
culation have been developed. An important case with dif-
ferent masses has been solved, which is a step forward to
a realistic calculation of the two-loop decay Z → bb̄. The
results show that both methods deliver consistent results.
This confirms the expectation that the two techniques de-
veloped are applicable in the demanding cases considered
here.
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J. Blümlein, F. Jegerlehner and T. Riemann editors

10. A. Frink, U. Kilian, D. Kreimer, Nucl. Phys. B 488 (1997)
426
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